1,856 research outputs found

    Nucleosynthesis Constraints on Scalar-Tensor Theories of Gravity

    Get PDF
    We study the cosmological evolution of massless single-field scalar-tensor theories of gravitation from the time before the onset of e+e−e^+e^- annihilation and nucleosynthesis up to the present. The cosmological evolution together with the observational bounds on the abundances of the lightest elements (those mostly produced in the early universe) place constraints on the coefficients of the Taylor series expansion of a(ϕ)a(\phi), which specifies the coupling of the scalar field to matter and is the only free function in the theory. In the case when a(ϕ)a(\phi) has a minimum (i.e., when the theory evolves towards general relativity) these constraints translate into a stronger limit on the Post-Newtonian parameters γ\gamma and β\beta than any other observational test. Moreover, our bounds imply that, even at the epoch of annihilation and nucleosynthesis, the evolution of the universe must be very close to that predicted by general relativity if we do not want to over- or underproduce 4^{4}He. Thus the amount of scalar field contribution to gravity is very small even at such an early epoch.Comment: 15 pages, 2 figures, ReVTeX 3.1, submitted to Phys. Rev. D1

    Nonlinear evolution of r-modes: the role of differential rotation

    Full text link
    Recent work has shown that differential rotation, producing large scale drifts of fluid elements along stellar latitudes, is an unavoidable feature of r-modes in the nonlinear theory. We investigate the role of this differential rotation in the evolution of the l=2 r-mode instability of a newly born, hot, rapidly rotating neutron star. It is shown that the amplitude of the r-mode saturates a few hundred seconds after the mode instability sets in. The saturation amplitude depends on the amount of differential rotation at the time the instability becomes active and can take values much smaller than unity. It is also shown that, independently of the saturation amplitude of the mode, the star spins down to rotation rates that are comparable to the inferred initial rotation rates of the fastest pulsars associated with supernova remnants. Finally, it is shown that, when the drift of fluid elements at the time the instability sets in is significant, most of the initial angular momentum of the star is transferred to the r-mode and, consequently, almost none is carried away by gravitational radiation.Comment: 10 pages, 5 figure

    Normal Modes of Black Hole Accretion Disks

    Get PDF
    This paper studies the hydrodynamical problem of normal modes of small adiabatic oscillations of relativistic barotropic thin accretion disks around black holes (and compact weakly magnetic neutron stars). Employing WKB techniques, we obtain the eigenfrequencies and eigenfunctions of the modes for different values of the mass and angular momentum of the central black hole. We discuss the properties of the various types of modes and examine the role of viscosity, as it appears to render some of the modes unstable to rapid growth

    Anti-Proton Evolution in Little Bangs and Big Bang

    Full text link
    The abundances of anti-protons and protons are considered within momentum-integrated Boltzmann equations describing Little Bangs, i.e., fireballs created in relativistic heavy-ion collisions. Despite of a large anti-proton annihilation cross section we find a small drop of the ratio of anti-protons to protons from 170 MeV (chemical freeze-out temperature) till 100 MeV (kinetic freeze-out temperature) for CERN-SPS and BNL-RHIC energies thus corroborating the solution of the previously exposed "ani-proton puzzle". In contrast, the Big Bang evolves so slowly that the anti-baryons are kept for a long time in equilibrium resulting in an exceedingly small fraction. The adiabatic path of cosmic matter in the phase diagram of strongly interacting matter is mapped out

    Gravitational Waves in Generalised Brans-Dicke Theory

    Full text link
    We have solved cosmological gravitational Wave(GW)equation in the frame work of Generalised Brans-Dicke(GBD) theory for all epochs of the Universe.The solutions are expressed in terms of the present value of the Brans-Dicke coupling parameter ω(ϕ)\omega(\phi).It is seen that the solutions represent travelling growing modes for negative values of ω0\omega_{0} for all epochs of the Universe.Comment: 7Pages,no figure
    • …
    corecore